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Abstract

New sets of boundary conditions for the velocity–pressure formulation of the incompressible Navier–Stokes equations
are derived. The boundary conditions have the same form on both inflow and outflow boundaries and lead to a divergence
free solution. Moreover, the specific form of the boundary condition makes it possible derive a symmetric positive definite
equation system for the internal pressure. Numerical experiments support the theoretical conclusions.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Both the velocity–divergence and the velocity–pressure forms are considered when solving the incompress-
ible Navier–Stokes equations. With the velocity–divergence form, careful consideration must be given to the
discretization of the continuity equation, in order to prevent odd–even point decoupling and also to main-
tain the divergence free condition. Alternative methods for this form such as the vorticity/stream function
formulation and the staggered grid approach are frequently applied in two dimensions. Both of these meth-
ods become less attractive in three dimensions, due to either boundary condition considerations or compu-
tational complexity.

To avoid the difficulties mentioned above and to increase the potential for computational efficiency when
solving general problems, the velocity–pressure form of the equations is chosen. The main drawback with
this form is that the direct enforcement of zero divergence is lost. There has been considerable discussion in
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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the literature regarding the proper boundary condition for the pressure equation. According to [1] the nor-
mal component of the momentum equation is the appropriate boundary condition. However, as indicated
in [2,3] this particular boundary condition allows a nonzero divergence on the boundary, and thus, allows a
nonzero divergence in the domain of interest. Furthermore, in [4] it is pointed out that this boundary con-
dition provides no new information, resulting in an under-determined system. In [5] the author considers
the solid boundary condition for the pressure equation and imposes the divergence or the normal derivative
of the divergence in combination with the normal component of the momentum equation.

Staggered grids are often used in the numerical solution of the incompressible Navier–Stokes equations.
That approach which more or less excludes the use of the energy method as an analysis tool is considered
in [6–9]. Another way of dealing with the incompressible Navier–Stokes equations is to use projection or
fractional step methods, see [10–12]. Typically, one first computes an approximation of the velocity field
that does not satisfy the divergence relation and where no pressure is involved. Next, an approximation
of the pressure is computed that is used to correct the velocity field in order to satisfy the divergence rela-
tion. These methods are very popular but in most cases low order accurate (due to the sequential compu-
tation). Yet another way to reduce the divergence is to add a term (as in [2,5]) to the pressure equation
that introduce damping in the divergence equation. This technique works well, can easily complement
other techniques (for example the one in this paper) and damps divergence in the whole computational
domain. It might be a necessary ingredient for problems with a divergence source in the interior of the
domain.

In this paper we focus more on divergence sources at the boundaries. We will revisit the problem with
switching from the velocity–divergence to the velocity–pressure form and derive necessary and sufficient con-
ditions for obtaining the same solution, see also [13]. Our approach is related to the plan of attack in [5] in the
sense that we combine boundary conditions for the momentum equations with boundary conditions for the
advection–diffusion equation for the divergence, and obtain a full set of boundary conditions for the veloc-
ity–pressure formulation. Our conditions are derived in the continuous setting and therefore of general use.

The rest of this paper is organized in the following way. In Section 2, we analyze the nonlinear problem and
derive new boundary conditions. The results from the nonlinear problem are applied to an example in Section
3. The discrete problem is analyzed in Section 4. Numerical results are presented in Section 5. Conclusions are
drawn in Section 6.
2. Analysis of the nonlinear problem

The initial-boundary-value problem for the two-dimensional incompressible Navier–Stokes equations on
the conventional velocity–divergence form can be written as
Vt þ ðV � rÞVþrp � mDV ¼ f; x 2 X; t P 0;

r � V ¼ 0; x 2 X; t P 0;

BðV; pÞT ¼ g; x 2 oX; t P 0;

ðV; pÞT ¼ h; x 2 X; t ¼ 0;

ð1Þ
where V = (u,v)T is the fluid velocity, p is the pressure, f is the forcing function, g the boundary data and
h = (h1,h2)T the initial data. $ and D are the gradient and Laplacian operators respectively. The density is ta-
ken to be one, and the coefficient m is the reciprocal of the Reynolds number, m = 1/Re. The domain X is in R2,
and the boundary of the domain is oX. The two boundary conditions are represented by the boundary oper-
ator B(V,p) and the boundary data g.

There are alternative forms for the system (1). One of these forms can be derived by taking the divergence of
the momentum equation and applying $ Æ V = 0. The resulting system is called the velocity–pressure (or pres-
sure Poisson) form of the equations, and the associated initial-boundary-value problem is defined by
Vt þ ðV � rÞVþrp � mDV ¼ f; x 2 X; t P 0;

Dp ¼ ~f; x 2 X; t P 0;
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BðV; pÞT ¼ g; x 2 oX; t P 0;eBðV; pÞT ¼ ~g; x 2 oX; t P 0;

ðV; pÞT ¼ h; x 2 X; t ¼ 0;

ð2Þ
where ~f ¼ ðr � f � ðru � Vx þrv � VyÞ. Now, the pressure equation plays the role of the continuity equation.
Since this equation is in second-order form, the system requires an additional boundary condition (with
boundary operator eB).

Note that even though one can derive the pressure Poisson equation by assuming zero divergence, it is not
clear that the implication goes the other way. In other words, the simple replacement of divergence relation
with the pressure equation does not imply zero divergence. Other elements must also be considered. The main
part of this paper is devoted to a step by step derivation (using classical initial boundary value theory) of why
(2) is an appropriate form of (1) and what kind of boundary conditions (eB and ~g) and initial conditions (h) the
system (2) requires in order to produce identically the same solution as the one given by (1).

2.1. Replacing the divergence condition

Let us start by considering the well posedness of a time-dependent scalar advection–diffusion equation with
a general set of data
/t þ ð~U � rÞ/� mD/ ¼ F; x 2 X; t P 0;

L/ ¼ G; x 2 oX; t P 0;

/ ¼ H; x 2 X; t ¼ 0:

ð3Þ
The data in (3) are the forcing function F, the boundary data G and the initial data H. For reasons that be-
come evident later we require H to be small. Also unknown in (3) is the boundary operator L. For the variable
coefficient case, ~U ¼ ða; bÞ varies in space and time while for the nonlinear case we have ~U ¼ ðu; vÞ and
/ ¼ r � ~U . The viscosity m� 1 is constant and small.

Remark. Consider the problem (1). By taking the divergence of the momentum equation and not imposing the
divergence condition we obtain the advection–diffusion problem (3) where / ¼ r � V; ~U ¼ V and F ¼ ~f � Dp.
However, and we stress this point, we will first consider (3) as a fully general advection–diffusion problem and
determine general conditions that leads to / = 0. Once that is done, we can relate that general result to the
specific Navier–Stokes formulation (2) and explicitly state the conditions that are required for obtaining zero
divergence. This is the main theme of the paper.

The energy method (multiply with /, integrate over the domain and apply Green’s theorem) applied to (3)
yields Z I � � Z
k/k2
t þ 2m

X
jr/j2 dxdy ¼ �

oX
ð~U �~nÞ/2 � 2m/

o/
on

dsþ
X
½ðr � ~UÞ/2 þ 2/F�dxdy; ð4Þ
where~n is the outward pointing normal. Clearly we need to bound the two terms on the right-hand side of (4).
Let us start with the boundary integral and assume that Un ¼ ~U �~n 6¼ 0. We rewrite the boundary terms as" #
U n/
2 � 2m/

o/
on
¼ U�1

n Un/� m
o/
on

� �2

� m
o/
on

� �2

: ð5Þ
A boundary condition that cancels the quadratic form with the wrong sign in (4) is
eBðV; pÞT ¼ L/ ¼ ðU n � jU njÞ
2

/� m
o/
on
¼ G: ð6Þ
The boundary condition (6) yields the estimate
�
I

oX
Un/

2 � 2m/
o/
on

� �
ds 6

I
oX

1

jU nj
ðG2 � ðjUnj/þGÞ2Þds ð7Þ
both for inflow (Un < 0) and outflow (Un > 0).
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Remark. Other possible boundary conditions (that include the case where Un = 0) except (6) that can be used
are / = 0 both for inflow and outflow and o//on = 0 for outflow. However, (6) is the most dissipative
condition.

Next we consider the second potential growth term in (4). We get the estimate
Z
X
½ðr � ~UÞ/2 þ 2/F�dxdy 6 ðgþ dÞk/k2 þ 1

g
kFk2 ð8Þ
by using 2/F ¼ �ð ffiffiffigp /� F=
ffiffiffi
g
p Þ2 þ g/2 þ F2=g 6 g/2 þ F2=g. For the linear problem we have d ¼ jr � ~U jmax.

To get an estimate in the nonlinear problem we consider short times t 6 T0 and recall that /(x, 0) = H where
H is small. Note also that / obeys a maximum principle (the magnitude of local maxima and minima de-
crease). This implies that / is limited for short times and consequently we can choose d = j/jmax for t 6 T0

and x 2 oX.
By defining the boundary norm as kUk2

oX ¼
H

oXU2=jU njds, introducing the notation ~g ¼ gþ d and inserting
(7), (8) into (4) we obtain the final estimate
k/k2 þ
Z T

0

ð2mkr/k2 þ kjU nj/þGk2
oXÞe�~gðt�T Þ dt 6 kHk2e~gT þ

Z T

0

1

~g
kFk2 þ kGk2

oX

� �
e�~gðt�T Þ dt: ð9Þ
The estimate (9) is obtained by multiplying both sides of (4) with the integrating factor e�~gt, forming a total
time derivative and finally integrating from 0 to T. In the nonlinear case, (9) is valid for T 6 T0.

We are now ready to prove the following proposition.

Proposition 2.1.

Consider the problem (3). If the boundary conditions are given by (6) and
F ¼ 0; G ¼ 0; H ¼ 0 ð10Þ

then the L2 norm of the divergence i/i2 will be zero for all times.

Proof. The conditions (10) inserted into (9) yields
k/k2 þ
Z T

0

ð2mkr/k2 þ kU n/k2
oXÞe�~gðt�T Þ dt 6 0: ð11Þ
In the linear case this concludes the proof. In the nonlinear case, (11) is valid for small times T 6 T0 and we
obtain i/i2(T0) = 0. A repetition of the argument proves Proposition 2.1 for the nonlinear case for all
times. h

Remark. Note that for long time calculations, H 6¼ 0 but sufficiently small might suffice since initial nonzero
divergence effects will decay with time due to the dissipative effect of the boundary condition (6), see (7), (8)
and (4).

2.2. The energy estimate for the momentum equations

Multiplication of the top two equations in (2) with V and integration over the domain yields
kVk2
t þ 2mðkruk2 þ krvk2Þ ¼ �

I
oX

W TAðVÞW dsþ 2

Z
X

/ðp þ V2=2Þ þ V � f
� �

dxdy; ð12Þ
where / = $ Æ V and
W ¼

un

us

p

mðoun=onÞ
mðous=onÞ

0BBBBBB@

1CCCCCCA; AðVÞ ¼

un 0 þ1 �1 0

0 un 0 0 �1

þ1 0 0 0 0

�1 0 0 0 0

0 �1 0 0 0

0BBBBBB@

1CCCCCCA: ð13Þ
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In (12) and (13) un, us denote the normal velocity and tangential velocity. By choosing the boundary conditions
and initial data discussed in the previous section we have / = 0.

To bound the energy in (12) we need to make sure that WTAW 6 0. The correct number of boundary con-
ditions and a maximally dissipative form of the boundary conditions are obtained by specifying the correct
characteristic variable, for more details see [14]. We can write the condition in diagonal form as
W TAW ¼ ðX TW ÞTKðX TW ÞT
and specify (XTW)i = Ci whenever ki < 0. Straightforward but tedious algebra yields
k1;2 ¼
un

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
un

2

	 
2

þ 1

r
; k3 ¼ 0; k4;5 ¼

un

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
un

2

	 
2

þ 2

r
; ð14Þ

X T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

1

q
0 0 0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

2

q
0 0 0

0 0
ffiffiffi
2
p

0 0

0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ k2

4

q
0

0 0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ k2

5

q

26666666664

37777777775

�1

0 k1 0 0 �1
0 k2 0 0 �1
0 0 1 1 0
k4 0 1 �1 0
k5 0 1 �1 0

266664
377775: ð15Þ
Note that k2, k5 are negative for all values of un. This implies that the conditions
C2 ¼ k2us � m
ous

on
¼ g2; C5 ¼ k5un � m

oun

on
þ p ¼ g5; ð16Þ
lead to well posedness. Our result can be formulated as
BðV; pÞT ¼
0 k2 � mo=on 0

k5 � mo=on 0 1

� � un

us

p

0B@
1CA ¼ g: ð17Þ
Remark. Note that (16) and (17) can be imposed on both inflow and outflow boundaries which simplifies
numerical calculations since it is not necessary to switch type of boundary conditions. For other types of
boundary conditions that lead to well-posedness, see [15,16].

Remark. To apply the boundary conditions (16) and (17), the right-hand side g which includes both the pres-
sure and the normal gradients of the velocities must be known (or at least a fair guess must be available). In
many practical problems, pressure data is given and one can assume that the contribution from the velocity
gradients is small. One example is the inflow/outflow problem of a jet-engine. Typical data (provided e.g. by
the engine companies) at the inflow are the total pressure, the total temperature and the flow direction (or
mass flow rate [17,18]) and at the outlet the static pressure. At solid boundaries, our boundary conditions
are not applicable since neither the pressure nor the normal gradients of the velocities are known (or can
be estimated). However, one can easily combine (16) with the wall boundary technique presented in [2,5] in
order to treat all boundaries appropriately.

By choosing the boundary conditions (17) we obtain the final estimate
kVk2 þ
Z T

0

2mðkruk2 þ krvk2Þe�gðt�T Þ þ
Z T

0

kCþk2
Ce�gðt�T Þ dt

6 khk2egT þ
Z T

0

1

g
kfk2 þ kgk2

C

� �
e�gðt�T Þ dt; ð18Þ
where kCþk2
C ¼

P
i¼1;3;4

H
CkiC

2
i ds; kgk2

C ¼
P

i¼2;5

H
Cjkijg2

i ds and C = oX.
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2.3. The velocity–pressure formulation for zero divergence

The main result in this paper is

Proposition 2.2. Consider the velocity–pressure formulation (2). If the boundary conditions are given by (6) and

(17) with ~g ¼ 0 and $ Æ h1 = 0. Then (2) has a divergence free solution that satisfies the estimate (18).

Proof. See Sections 2.2 and 2.3 above. h

Remark. The linearized version of (2) can (by using the estimate (18)) be shown to have a unique solution and
hence be strongly well-posed, see also [15,19] where similar results were obtained. We can summarize the result
in Propositions 2.1 and 2.2 in the following way. By

� solving Poisson’s equation for the pressure ðF ¼ ~f � Dp ¼ 0Þ,
� using dissipative (B) boundary conditions for the momentum equations,
� using dissipative ðeBÞ boundary conditions for the divergence equation,
� using zero boundary data ð~g ¼ 0Þ for the divergence boundary conditions,
� initializing with a divergence free velocity field ($ Æ h1 = 0), a divergence-free solution to the velocity–pres-

sure formulation (2) will be obtained.
3. An example

In this section we will investigate the new boundary conditions in some detail by using the Laplace–Fourier
transform technique on a constant coefficient version of problem (1) and (2). By Laplace–Fourier tranforming
these problems, we get two systems of ordinary differential equations of the form
AV xx þ BV x þ CV ¼ eF; x P 0: ð19Þ

In (19), eF includes the Laplace–Fourier transformed forcing functions and initial data present in (1) and (2).
V is the Laplace–Fourier transform of (V,p)T. The constant matrices in (19) are
A ¼

�m 0 0

0 �m 0

0 0 �1

0BB@
1CCA; B ¼

�u 0 1

0 �u 0

0 0 0

0BB@
1CCA; C ¼

~s 0 0

0 ~s ix

0 0 x2

0BB@
1CCA; ð20Þ

A ¼

�m 0 0

0 �m 0

0 0 0

0BB@
1CCA; B ¼

�u 0 1

0 �u 0

1 0 0

0BB@
1CCA; C ¼

~s 0 0

0 ~s ix

0 ix 0

0BB@
1CCA; ð21Þ
for the velocity–pressure and velocity–divergence form respectively. The constants and parameters
�u; �v; m; s; ix in (20) and (21) are the velocity components in x, y-direction, the viscosity, the dual variable
to time and the dual variable to y respectively. We have also used the abbreviation ~s ¼ sþ ix�vþ mx2.

We limit the analysis to the case where jxjP x0 > 0 since the equations collapse for x = 0. This means that
we exclude solutions with zero mean value in the y-direction. The top two rows are identical for both formu-
lations and represent the momentum equations. The bottom row represents the Poisson equation for the pres-
sure and the divergence relation respectively.

The system (19) defined in the half space x P 0 must be augmented with boundary conditions. At infinity
(x!1) we demand a bounded solution which implies that only decaying modes will be considered. At x = 0
we impose boundary conditions.

The solution is a sum of the homogeneous and particular solution, i.e. V = U + Up. The particular solution
Up is a smooth bounded function of the data of the problem, i.e. Up ¼ U pðeFÞ. We assume that the data have
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compact support in x P 0, i.e. that eFðjxj > RÞ ¼ 0. The homogeneous solution is obtained by making the
ansatz U = /exp(jx) and inserting that into the homogeneous version of (19). That gives us the generalized
eigenvalues and eigenvectors as solutions to
jAj2
i þ Bji þ Cj ¼ 0; ðAj2

i þ Bji þ CÞ/i ¼ 0; ð22Þ

where i = 1–6 for the velocity–pressure case and i = 1–4 for the velocity–divergence case.

3.1. The velocity–pressure formulation

In the velocity–pressure case we get
j1;2 ¼ �jxj; j34;56 ¼
�u
2m

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u
2m

� �2

þ ~s
m

s
: ð23Þ
The double roots j34,56 indicate that U = (/0 + x/1) exp(j34,56x) is the proper ansatz. By using that ansatz we
get /0 = 0 and the solution
U ¼
X6

i¼1

riwie
jix; ð24Þ
where the ri’s are constant to be determined by the boundary conditions and
w1 ¼
1

þ x
jxj

� b1

jxj

2664
3775; w2 ¼

1

� x
jxj

þ b2

jxj

2664
3775; w3 ¼ w5 ¼

1

0

0

264
375; w4 ¼ w6 ¼

0

1

0

264
375: ð25Þ
The parameters in (25) are defined as b1 ¼ ~sþ �ujxj � mjxj2, b2 ¼ ~s� �ujxj � mjxj2. A decaying solution for a
positive real part in s and positive x is
U ¼ r2w2ej2x þ ðr5w5 þ r6w6Þej5x: ð26Þ

There is a possibility of a triple root case (for a more detailed discussion on multiple roots, see [16]) since the
parameters b1, b2 might vanish. For that case we have
j34 ¼ j1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u
2m
� jxj

� �2

þ b1

m

s
� �u

2m
� jxj

� �
;

j56 ¼ j2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u
2m
þ jxj

� �2

þ b2

m

s
þ �u

2m
þ jxj

� �
:

ð27Þ
The triple root ansatz U = (/0 + x/1 + x2/2)exp (j2x) yields the decaying solution
U ¼
c1

c2

c3

264
375þ xc3

jxj
�uþ2mjxj

� ix
�uþ2mjxj
0

264
375

264
375e�jxjx: ð28Þ
By writing the decaying double root solution (26) in a modified way as
U ¼ r2

j5 � j2

w2ej2x þ
r5

r6

0

264
375� r2

j5 � j2

1

� ix
jxj

0

264
375

264
375ej5x; ð29Þ
using (27), making the substitutions c1 = r5, c2 = r6 and c3 ¼ �r2
�uþ2mjxj
jxj and letting b2! 0 we find that (29)

converge to (28).
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3.2. The velocity–divergence formulation

Essentially the same procedure as described above yields the four generalized eigenvalues
j1;2 ¼ �jxj; j3;5 ¼
�u
2m

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u
2m

� �2

þ ~s
m

s
: ð30Þ
The numbering in (30) is chosen to simplify the comparison with the velocity–pressure formulation above.
Without going into detail, we state that the decaying single root solution that converges to the double root
solution is 2 3
U ¼ a2

j5 � j2

w2ej2x þ a5 �
a2

j5 � j2

� � 1
ij5

x

0

64 75ej5x: ð31Þ
Again we use the notation established in the previous section.

3.3. The effect of the new boundary conditions

Now we will investigate what effect the divergence boundary condition (6) has on the velocity–pressure
solution. We can prove

Proposition 3.1.

Consider the velocity–pressure formulation (29). By applying the divergence boundary condition (6) we obtain
the divergence free solution given in (31).

Proof. The boundary condition (6) applied on the boundary x = 0 with the outward normal pointing in the
negative x-direction and the velocity V ¼ ð�u;�vÞT is
�uþ j�uj
2

� �
/� m/x ¼ 0: ð32Þ
With �u > 0 we have inflow and a Robin boundary condition while �u < 0 yields a clean Neumann condition.
Both cases can be treated simultaneously, and (32) applied to (29) yields
r6 ¼
1

ix
r2 �

j5

ix
r5;
which inserted in (29) yields (31) exactly. h

An almost immediate consequence of Proposition 3.1 is

Lemma 3.2. The divergence free form of the velocity–pressure formulation augmented with the boundary

conditions (17) yields a pointwise bounded solution.

Proof. The boundary conditions (17) leads to an energy estimate of the form (18) which bounds the velocity
components in Laplace–Fourier space pointwise. By normalizing the eigenvectors in (31) with jw2j we get
U ¼ ~a2

j5 � j2

1

jw2j
w2ej2x þ ~a5 �

~a2

j5 � j2

� �
1

jw2j

1
ij5

x

0

264
375ej5x: ð33Þ
The boundedness of the velocity components now implies that the coefficients ~a2; ~a5 are bounded. This in turn
implies that the pressure is also bounded since
p ¼ ~a2

b2

ðj5 � j2Þjxj
1

jw2j
ej2x
and jxj > x0 > 0. The inverse Laplace–Fourier transform yields the same result in the nontransformed space. h
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4. The numerical approximation

The result of the analysis will be evaluated by using a high order finite difference technique. To construct the
scheme we use one-dimensional summation-by-parts (SBP) operators. To make the paper self-contained we
start with a short description (for more details see [20–22]). We define the first and second derivative operators
of interest in this paper.

Definition 4.1.

A difference operator D1 = H�1Q approximating o/ox is a first derivative SBP operator if H = HT > 0 and
Q + QT = B = diag(�1,0, . . . , 0,1).

Definition 4.2. A difference operator D2 = H�1(�M + BS) approximating o2/ox2 is said to be a symmetric sec-
ond derivative SBP operator if M = MT P 0, if S includes an approximation of the first derivative operator at
the boundary and B = diag(�1,0, . . . , 0,1).

The first and second derivative operators in this paper are based on diagonal norms. They are half as accu-
rate at the boundaries as in the interior. The theory in [23] implies that first derivative operators of order 4, 6, 8
lead to globally 3, 4, 5th order accurate schemes for hyperbolic problems and 4, 5, 6th order global accuracy
for parabolic problems.

We consider a two-dimensional domain with an N + 1 · M + 1-points equidistant grid. The numerical
approximation at grid point (xi,yj) is denoted vi,j. We define a discrete solution vector vT = [v0,v1, . . . ,vN],
where vk = [vk,0,vk,1, . . . ,vk,M] is the solution vector at xk along the y-direction, as illustrated in Fig. 1. To sim-
plify the notation we introduce vw,e,s,n, to define the boundary values at the west, east, south and north bound-
aries (see Fig. 1). To distinguish if a difference operator D is operating in the x or y-directions we use the
notations Dx and Dy. The following two-dimensional operators:
Dx ¼ ðD1 � IyÞ; Dy ¼ ðIx � D1Þ;
D2x ¼ ðD2 � IyÞ; D2y ¼ ðIx � D2Þ;
Hx ¼ ðH � IyÞ; Hy ¼ ðIx � HÞ;

ð34Þ
will be frequently used. D1, D2 and H are the one-dimensional operators discussed above and Ix,y are the iden-
tity matrices. All matrices have the appropriate size in the x and y-direction respectively. We have introduced
the Kronecker product
C � D ¼

c0;0D � � � c0;q�1D

..

. ..
.

cp�1;0D � � � cp�1;q�1D

2664
3775;
where C is a p · q matrix and D is a m · n matrix. Two useful rules for the Kronecker product are
(A � B)(C � D) = (AC) � (BD) and (A � B)T = AT � BT.
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Fig. 1. Two-dimensional domain showing the orientation of the solution vectors.



J. Nordström et al. / Journal of Computational Physics 225 (2007) 874–890 883
4.1. The semi-discrete approximation

The semi-discrete finite difference approximation (including a skew-symmetric splitting of the convective
terms) of the momentum equations can be written
ut þ DðskewÞ
x uþ DðskewÞ

y uþ Dxp ¼ mDLuþ SATðuÞ þ F ðuÞ;

vt þ DðskewÞ
x vþ DðskewÞ

y vþ Dyp ¼ mDLvþ SATðvÞ þ F ðvÞ:
ð35Þ
In (35), F(u,v) are the discrete forcing functions, and Dskew
x;y the skew-symmetric split operator in the x- and

y-direction, respectively
DðskewÞ
x 	 1

2
ADx þ

1

2
DxA�

1

2
Ax; DðskewÞ

y 	 1

2
BDy þ

1

2
DyB�

1

2
By :
The matrices A, B, Ax, By have the values of u, v, Dxu, Dyv injected on the diagonal. We have also introduced
DL = D2x + D2y which is the discrete Laplacian. The boundary conditions are introduced as penalty terms
SAT(u,v), using the SAT method, see for example [24,25,22]. The discrete Poisson system for the pressure,
see Eq. (2), is given by
DLp ¼ f ; ð36Þ

where f = �((Dxu)(Dxu) + 2(Dyu)(Dxv) + (Dyv)(Dyv)) + DxF(u) + DyF(v).

4.2. Boundary conditions for the semi-discrete approximation

The discrete version of the boundary condition (6) that leads to maximum dissipation of the divergence
ux + vy = / is given by
Lð/Þw ¼
ðuþ jujÞ

2
ðDxuþ DyvÞw � mðDxðDxuþ DyvÞÞw ¼ 0;

Lð/Þe ¼
ðu� jujÞ

2
ðDxuþ DyvÞe � mðDxðDxuþ DyvÞÞe ¼ 0;

Lð/Þs ¼
ðvþ jvjÞ

2
ðDxuþ DyvÞs � mðDyðDxuþ DyvÞÞs ¼ 0;

Lð/Þn ¼
ðv� jvjÞ

2
ðDxuþ DyvÞn � mðDyðDxuþ DyvÞÞn ¼ 0:

ð37Þ
Remark. Other possible boundary conditions except (37) that can be used are (Dxu + Dyv) = 0 both for inflow
and outflow and o(Dxu + Dyv)/on = 0 for outflow.

The discrete boundary conditions for the x-component u, at the boundaries are given by
LðuÞw ¼ �kðwÞ5 uw � mðSuÞw þ pw ¼ gðuÞw ;

LðuÞe ¼ þkðeÞ5 ue � mðSuÞe þ pe ¼ gðuÞe ;

LðuÞs ¼ �kðsÞ2 us � mðSuÞs ¼ gðuÞs ;

LðuÞn ¼ þkðnÞ2 un � mðSuÞn ¼ gðuÞn :

ð38Þ
The corresponding boundary conditions for the y-component v are given by
LðvÞw ¼ �kðwÞ2 vw � mðSvÞw ¼ gðvÞw ;

LðvÞe ¼ þkðeÞ2 ve � mðSvÞe ¼ gðvÞe ;

LðvÞs ¼ �kðwÞ5 vs � mðSvÞs þ ps ¼ gðvÞs ;

LðvÞn ¼ þkðeÞ5 vn � mðSvÞn þ pn ¼ gðvÞn :

ð39Þ
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The expressions for the two eigenvalues k2,5 are given by (15), and at each boundary, we get,
kðwÞ5 ¼
�uw

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uw

2

	 
2

þ 2

r
; kðwÞ2 ¼

�uw

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uw

2

	 
2

þ 1

r
;

kðeÞ5 ¼
ue

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ue

2

	 
2

þ 2

r
; kðeÞ2 ¼

ue

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ue

2

	 
2

þ 1

r
;

kðsÞ5 ¼
�vs

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�vs

2

	 
2

þ 2

r
; kðsÞ2 ¼

�vs

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�vs

2

	 
2

þ 1

r
;

kðnÞ5 ¼
vn

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vn

2

	 
2

þ 2

r
; kðnÞ2 ¼

vn

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vn

2

	 
2

þ 1

r
:

ð40Þ
The penalty terms for the x- and y-component (u, v) are given by
SATðu;vÞ ¼ sðu;vÞw H�1
x e0 � ðLðu;vÞw � gðu;vÞw Þ þ sðu;vÞe H�1

x eN � ðLðu;vÞe � gðu;vÞe Þ þ sðu;vÞs H�1
y ðLðu;vÞs � gðu;vÞs Þ � e0

þ sðu;vÞn H�1
y ðLðu;vÞn � gðu;vÞn Þ � eN ;
where e0 = [1,0, . . . , 0]T, eN = [0, . . . , 0,1]T. The eight penalty parameters, sðu;vÞw; e; s; n will be tuned to obtain an

energy estimate. By multiplying the first and the second equation in (35) by uTH and vTH respectively and
adding the transpose we obtain,
ðkuk2
H þ kvk

2
H Þt ¼ BT þ DI þ RT : ð41Þ
In (41), H 	 HxH y denotes the two-dimensional norm. The BT quantities denote the boundary terms that will
be discussed below. The dissipation DI 6 0 and given by
DI ¼ �2mðuTðMxHy þ HxMyÞuþ vTðMxH y þ HxMyÞvÞ:
The term RT ¼ uTðAx þ ByÞHuþ vTðAx þ ByÞHvþ ðDxuþ DyvÞTHp is proportional to the discrete diver-
gence. To obtain (41) we used the two assumptions: (i) H is a diagonal norm, and (ii) Mx, My are symmetric
positive semi-definite. Note also that (Ax + By) is equivalent to (Dxu + Dyv) in the nonlinear case.

The boundary terms (BT ” BTw + BTe + BTs + BTn) are given by
BT w ¼ þuT
wHðuw � 2sðuÞw kðwÞ5 Þuw þ 2uT

wHð1þ sðuÞw Þðpw � mðSuÞwÞ þ vT
wHðvw � 2sðvÞw kðwÞ2 Þvw

þ 2vT
wHð1þ sðvÞw Þð�mðSvÞwÞ;

BT e ¼ �uT
e Hðue � 2sðvÞe kðeÞ5 Þue � 2uT

e Hð1� sðuÞe Þðpw � mðSuÞeÞ � vT
e Hðvw � 2sðvÞe kðeÞ2 Þve

� 2vT
e Hð1� sðvÞe Þð�mðSvÞeÞ;

BT s ¼ þvT
s Hðvs � 2sðvÞs kðsÞ5 Þvs þ 2vT

s Hð1þ sðvÞs Þðps � mðSvÞsÞ þ uT
s Hðus � 2sðuÞs kðsÞ2 Þus

þ 2uT
s Hð1þ sðuÞs Þð�mðSuÞsÞ;

BT n ¼ �vT
n Hðvn � 2sðuÞn kðnÞ5 Þvn � 2vT

n Hð1� sðvÞn Þðpn � mðSvÞnÞ � uT
n Hðun � 2sðuÞn kðnÞ2 Þun

� 2uT
n Hð1� sðuÞn Þð�mðSuÞnÞ:
BT can clearly be bounded if and only if sðu;vÞw;s ¼ �1 and sðu;vÞe;n ¼ 1. That leads to:
BT ¼

�uT
wðH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

w þ 8
p

Þuw � vT
wðH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

w þ 4
p

Þvw;

�uT
e ðH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

e þ 8
p

Þue � vT
e ðH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

e þ 4
p

Þve;

�vT
s ðH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

s þ 8
p

Þvs � uT
s ðH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

s þ 4
p

Þus;

�vT
n ðH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

n þ 8
p

Þvv � uT
n ðH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

n þ 4
p

Þun

8>>>><>>>>: ð42Þ
and an energy estimate completely analogous to the continuous case. (To realize that kCþk2
C ¼P

i¼1;3;4

H
CkiC

2
i ds in (18) corresponds to (42), solve for the gradients in (17) and insert them in kCþk2

C.)
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4.3. Solving the Poisson system for the pressure

Closing the system (36) requires appropriate boundary condition for the pressure. We will very briefly out-
line the procedure to compute a modified pressure that is consistent with the maximally dissipative divergence
boundary condition (37) and the momentum boundary conditions (38) and (39). The procedure for the west
(or the east) boundary is as follows:

(1) Use (39) to extract the tangential component of velocity ð~vwÞ at the boundary.
(2) Use (37) and ~vw to compute the normal component of velocity (ũw) at the boundary.
(3) Use (38), ~vw and ũw to compute the pressure ð~pwÞ at the boundary.

Similarly, the procedure for the south (or the north) boundary is given by

(1) Use (38) to extract the tangential component of velocity (ũs) at the boundary.
(2) Use (37) and ũs to compute the normal component of velocity ð~vsÞ at the boundary.
(3) Use (39), ũs and ~vs to compute the pressure ð~psÞ at the boundary.

Once the pressure at the boundaries is determined, we can close the Poisson system. First we multiply (36) with
H 	 HxHy , to obtain
ðð�M þ BS � HÞ þ ðH ��M þ BSÞÞp ¼ Hf :
Next we use ~pw;e;s;n (obtained in the procedure described above) to reduce it to a system where only the interior
points are included (denoted by the tilde sign). The resulting nonsingular positive definite symmetric reduced
system can be written
ð eM � eH þ eH � eM Þ~p ¼ �fHf � BT ; ð43Þ

where BT ¼ ð eM w � eH Þ ~pw þ ð eM e � eH Þ ~pe þ ð eH � eM sÞ~ps þ ð eH � eM nÞ ~pn. The matrices eM w;s and eM e;n denote the
first and last column of M, excluding the first and last row. The nonzero elements in the boundary derivative
operator BS (see Definition 4.2) sits in the first and the last row. The dissipative part M is by construction
symmetric and positive semi-definite. By removing the first and last rows and the first and last columns in
�M + BS, it is reduced to � eM . It can be shown that eM is positive definite.

Remark.
Due to the symmetric positive definiteness of (43), it can be solved efficiently. For our small scale problem,

we used the LU decomposition technique. Other choices for small scale problems are the incomplete Cholesky
or the preconditioned conjugate gradient method. For large scale problems running in parallel, multi grid (for
example provided in the software package hypre [27]) would be more appropriate.

Remark. The system (43) requires known pressure values at the boundaries. At solid boundaries, the normal
derivative of the pressure can be used to compute the pressure at the boundary, see [5] for details.
5. Computations

We will test our method on the analytic Taylor vortex model given by
u ¼ � cosðaÞ sinðbÞ expð�2p2mtÞ þ u1 cosðhÞ;
v ¼ sinðaÞ cosðbÞ expð�2p2mtÞ þ u1 sinðhÞ;

p ¼ � 1

4
ðcosð2aÞ þ cosð2bÞÞ expð�4p2mtÞ;

a ¼ pðx� x0 � u1 cosðhÞtÞ; b ¼ pðy � y0 � u1 sinðhÞtÞ:

ð44Þ
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The Taylor vortex is an analytic solution to the incompressible Navier–Stokes equations. In (44), (x0,y0) is the
initial position, u1 is the free-stream value and h the direction of the flow. The vortex is introduced into the
computational domain by using the analytic solution as boundary data and initial data.

For time advancement we use the explicit standard fourth-order Runge–Kutta method. The (inviscid) time-
step choice Dt = Dx/2 was stable in all calculations for m = 0.01. For much larger m and/or for much higher
resolutions, the viscid stability restrictions starts to apply, and an explicit Chebyshev Runge–Kutta method
[26] might be more effective.

In all the calculations below we use m = 0.01 and a fifth-order scheme (sixth-order interior accuracy and
third-order at boundaries). The pressure and streamline contours calculated on the 412 mesh at T = 0.4 are
shown in Fig. 2.

The convergence results at T = 1 for u, v, p and the divergence are shown in Tables 1 and 2. The divergence
is calculated using Dxu + Dyv with the fifth-order scheme. Both calculations use (38) and (39) as boundary
conditions. BC0 uses a Dirichlet condition on the divergence as the third condition. BC1 uses the advec-
tion–diffusion condition (37) as the third condition. Both conditions are acceptable in the sense that they
do not contribute to growth of the divergence for the continuous problem.

The correct order of accuracy is obtained for all variables. Also, as could be expected, the order of accuracy
of the divergence seem to be approximately one order less compared to the one obtained for the variables. The
results are similar with a slight advantage for BC1.

The time evolution (decay as predicted by the theory in this paper) of the divergence and l2-error of the
kinetic energy are shown in Fig. 3, see also Table 3. Both calculations were initiated using the exact analytical
solution (44) injected in the grid points. The result is very similar for the two types of boundary conditions and
in both cases, the divergence is clearly decreasing. BC1 performs marginally better.
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Fig. 2. Pressure contour and streamlines at T = 0.4, N = 412, m = 0.01. (a) Pressure and (b) streamlines.

Table 1
l2-error and convergence rate q, T = 1

N log(l2(u)) q(u) log(l2(v)) q(v) log(l2(p)) q(p) log(l2(div)) q(div)

21 �2.50 0.00 �2.49 0.00 �2.46 0.00 �1.30 0.00
41 �3.85 4.51 �3.92 4.76 �3.90 4.79 �2.55 4.17
61 �4.67 4.65 �4.75 4.73 �4.76 4.88 �3.27 4.07
81 �5.29 4.92 �5.37 4.93 �5.37 4.87 �3.75 3.87
101 �5.77 5.02 �5.85 5.02 �5.84 4.85 �4.11 3.71
151 �6.67 5.15 �6.74 5.10 �6.68 4.81 �4.74 3.61

Dirichlet boundary condition, m = 0.01.
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Fig. 3. Time history for divergence and l2 error of kinetic energy, N = 1512. The initial solution is the exact continuous solution. Circles
are BC1, m = 0.01. (a) Divergence and (b) kinetic energy.

Table 2
l2-error and convergence rate q, T = 1

N log(l2(u)) q(u) log(l2(v)) q(v) log(l2(p)) q(p) log(l2(div)) q(div)

21 �2.09 0.00 �2.09 0.00 �2.23 0.00 �0.62 0.00
41 �3.87 5.90 �3.86 5.89 �4.03 6.01 �2.15 5.09
61 �4.84 5.51 �4.83 5.51 �5.04 5.72 �3.03 4.98
81 �5.50 5.33 �5.50 5.35 �5.70 5.31 �3.61 4.59
101 �6.02 5.29 �6.01 5.31 �6.20 5.13 �4.02 4.26
151 �6.95 5.32 �6.95 5.38 �7.10 5.15 �4.71 3.95

Advection–diffusion BC, m = 0.01.

Table 3
l2-error at T = 20, N = 1512, m = 0.01

BC log(l2(u)) log(l2(v)) log(l2(p)) log(l2(div)) log(l2(u2 + v2))

BC0 �8.41 �8.23 �8.67 �6.42 �16.14
BC1 �9.23 �8.94 �9.51 �6.43 �17.54

Two different boundary conditions.
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Fig. 4. Time history for divergence and l2 error of kinetic energy, N = 1012. The initial solution is far from the exact continuous solution.
Circles are BC1, m = 0.01, (a) Divergence and (b) kinetic energy.
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Table 4
l2-error at T = 40, N = 1012, m = 0.01

BC log(l2(u)) log(l2(v)) log(l2(p)) log(l2(div)) log(l2(u2 + v2))

BC0 �0.09 �0.09 0.02 0.79 0.20
BC1 �9.97 �9.97 �10.81 �8.19 �19.47

Two different boundary conditions.

Fig. 5. Snapshots of pressure distribution using BC1, N = 1012, m = 0.01. (a) Pressure, T = Dt and (b) pressure, T = 1.
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As a final test we initialized the two calculations above with the initial data u = v = 0 and p = 1. We used
exact boundary data given by (44). This means that the initial data is far from the exact solution. The homo-
geneous initial conditions are incompatible with the boundary data from the exact solution, which generates
an nonsmooth solution with very large numerical divergence right next to the boundary.

The time evolution of the divergence and l2-error of the kinetic energy are shown in Fig. 4, see also Tables 4.
This time the result using BC1 is clearly superior with a fast convergence towards the analytical solution. BC0
does not converge to the analytical solution. The convergence of the calculation using BC1 is further illus-
trated in Figs. 5–7. This final test illustrates the remark just before Section 2.2 which states that initial nonzero
Fig. 6. Snapshots of pressure distribution using BC1, N = 1012, m = 0.01. (a) Pressure, T = 3 and (b) pressure, T = 10.



Fig. 7. Snapshots of pressure distribution using BC1, N = 1012, m = 0.01. (a) Pressure, T = 20 and (b) pressure, T = 40.
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divergence effects might decay with time, by using a sufficiently dissipative boundary condition. Note that
there are both decay and growth terms in (4).

Remark. In the test problem above we have different boundary conditions with exact boundary data. Since
the boundary conditions are different we cannot prove that we have only one solution. However, it is likely
since both versions of the boundary conditions lead to well-posedness for the separate linearized problems.
6. Conclusions

The nonlinear velocity–pressure formulation of the incompressible Navier–Stokes equations is analyzed.
New sets of boundary conditions are derived. The boundary conditions have the same form on both inflow
and outflow boundaries and lead to a divergence free solution.

The new boundary conditions are applied to a constant coefficient problem, where the solution in Laplace–
Fourier space can be written down explicitly. It is shown that the velocity–pressure formulation with the new
boundary conditions yield a divergence free solution and that all dependent variables including the pressure is
bounded.

The new formulation were implemented numerically using summation-by-parts operators and penalty tech-
nique. Stability of the linearized problem was shown. It was also shown how to use the new boundary con-
ditions to obtain consistent pressure values on the boundary, necessary for obtaining a symmetric positive
definite Poisson system.

The numerical procedure was tested on an analytical solution to the Navier–Stokes equations and stability
as well as the correct order of accuracy were demonstrated. As predicted by the theory, the initial divergence in
the solution decays, and as time passes a more and more divergence free and accurate solution is obtained.
This process is much more pronounced for the most dissipative variant of the boundary conditions.
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